Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method

نویسندگان

  • Chuanfeng Zhao
  • Shaocheng Xie
  • Xiao Chen
  • Michael P. Jensen
  • Maureen Dunn
چکیده

Quantifying the uncertainty of cloud retrievals is an emerging topic important for both cloud process studies and modeling studies. This paper presents a general approach to estimate uncertainties in ground-based retrievals of cloud properties. This approach, called the perturbation method, quantifies the cloud retrieval uncertainties by perturbing the cloud retrieval influential factors (like inputs and parameters) within their error ranges. The error ranges for the cloud retrieval inputs and parameters are determined by either instrument limitations or comparisons against aircraft observations. With the knowledge from observations and the retrieval algorithms, the perturbation method can provide an estimate of the cloud retrieval uncertainties, regardless of the complexity (like nonlinearity) of the retrieval algorithm. The relative contribution to the uncertainties of retrieved cloud properties from the inputs, assumptions, and parameterizations can also be assessed with this perturbation method. As an example, we apply this approach to the Atmospheric Radiation Measurement Program baseline retrieval, MICROBASE. Only nonprecipitating single-phase (liquid or ice) clouds have been examined in this study. Results reveal that different influential factors play the dominant contributing role to the uncertainties of different cloud properties. To reduce uncertainties in cloud retrievals, future efforts should be emphasized on the major contributing factors for considered cloud properties. This study also shows high sensitivity of cloud retrieval uncertainties to different cloud types, with the largest uncertainties for deep convective clouds. Limitations and further efforts for this uncertainty quantification method are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part II: Uncertainty in Rain, Hydrometeor Structure, and Latent Heating Retrievals

The impact of model microphysics on the retrieval of cloud properties based on passive microwave observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class liquid and three-class ice parameterizations, were used to simulate storms with differing am...

متن کامل

MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP

Cloud thermodynamic phase (ice, liquid, undetermined) classification is an important first step for cloud retrievals from passive sensors such as MODIS (Moderate Resolution Imaging Spectroradiometer). Because ice and liquid phase clouds have very different scattering and absorbing properties, an incorrect cloud phase decision can lead to substantial errors in the cloud optical and microphysical...

متن کامل

Validation of Cloud Microphysical Retrievals from Surface- and Satellite-Based Measurements Obtained During the Fall of 96 Penn State Aircraft Experiment

Comparisons with aircraft in situ measurements are critically needed to quantify the uncertainties in Atmospheric Radiation Measurement (ARM) surface-and satellite-band retrievals of cloud properties. During the fall of 1996, measurements were made from a ground-based remote sensing site in central Pennsylvania in conjunction with University of Wyoming King Air aircraft flights over the area. T...

متن کامل

Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements

[1] Cloud microphysical observations collected in situ during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment within the Chile-Peru stratocumulus cloud deck during October–November 2008 were used to assess MODIS Level 2 cloud property retrievals. The in situ aircraft-derived cloud property values were constructed from the drop size distributions measured by the Cloud Droplet Pro...

متن کامل

Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part I: Model Comparison Using EOF Analyses

The impact of model microphysics on the relationships among hydrometeor profiles, latent heating, and derived satellite microwave brightness temperatures TB have been examined using a nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over water. Two microphysical schemes (each employing three-ice bulk parameterizations) were tested for two different assumptions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014